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3. F'hys.: Condens Matter 6 (1994) 1359-1378. Pnnted in the UK 

Ground-state and elemental excitations of the one-dimensional 
multicomponent Fermi gas with 6-function interaction 

P Schlottmann 
Department of Physics, Florida State University, Tallahassee, FL 32306, USA 

Received 25 October 1993 

Abstract. We consider a gas of fermions with panbolic dispersion and N spin components 
(or spin S, N = 2s + 1) with SU(N) symmetry in one dimension interacting via a &function 
potential. The model is integrable and its solution has been obtained by Sutherland in terms of N 
nested Bethe m a z e .  The ground-state Bethe matz integral equations are solved numerically 
for both repulsive and attractive interactions to obtain the energy, the chemical potential, and 
the magnetic susceptibility as a function of the band filling and the interaction strength. For 
the repulsive interaction the Fermi gas has the propetties of a Luninger liquid. In the attractive 
case, on the other hand, the fermions in the ground-state form bound states of up to N fermions 
of different spin components. The spectrum of elemental charge and spin excitations is derived 
for the repulsive and attractive situations. The spectrum is discussed in the limits of vanishing 
interaction strength and very strong coupling. For the repulsive interaction the low-lying charge 
excitations can be characterized by the Fermi momentum and the Fermi velociy. The range 
of the spin-wave excitations is correlated with the Fermi momenmm of the charges The spin- 
wave velocity is inversely proportional to the magnetic susceptibility, The spin-wave excitations 
become soft in the infinite-repulsive-coupling limit. In the attractive case in zero field all 
excitation bmnches except that of bound states of N fermions have an energy gap. It requires a 
finite energy 0 break these bound states and hence there is no response to a field smaller than 
a critical field. The IOW-T specific heat is propottionai to the temper". 

1. Introduction 

We consider the gas of fermions with parabolic dispersion in one dimension with N 
spin components (colours with SU(N) symmetry) interacting via a 8-function potential 
of interaction strength c. The Hamiltonian is the following: 

where N, is the number of particles, the mass of the particles is equated to 4 and the sum 
in the interaction term is restricted to i < j to avoid double counting. The Hamiltonian is 
independent of the colours of the particles, which are incorporated via the symmetry of the 
wavefunction. The model has been exactly diagonalized by means of Bethe's m u t z  for 
the following situations. (i) If N = Ne the system (for symmetrized wavefunctions) is the 
gas of bosons solved by Lieb and Liniger [l]. (ii) For S = f the model was diagonalized 
by two nested Bethe unsutze by Gaudin [2] and Yang [3]. (iii) This result was extended by 
Sutherland [4] to an arbitrary number N of spin components (see also [51). 

0953-8984/94/071359+20$07.50 @ 1994 1OP Publishing Ltd 1359 
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In this paper we present a detailed study of the ground-state properties and derive the 
spectrum of elemental excitations of the model for c > 0 and c i 0 for arbitrary N by 
numerically solving the Bethe equations. The ground-state Bethe ansa@ integral 
equations for c > 0 were stated by Sutherland [4] and those for an attractive interaction by 
Takahashi [6]. The thermodynamic Bethe Q ~ S C Z ~ Z  equations of the N-component gas for both 
signs of the interaction were derived and discussed in [7]. For a repulsive interaction we 
obtain that the ground-state properties and the excitations are those expected for a Luttinger 
liquid, while if the potential is attractive the fermions form bound states of up to N fermions 
of different colour with spin gaps in the excitation spectrum. 

One motivation for this study is the fact that the one-dimensional t-J model, which is 
integrable only at the supersymmetric point ( r  = J )  [8,9], behaves like a Luttinger liquid 
if t > J while it has a spin gap for t < J [IO]. In model (1.1) a small value of c could 
parametrize the deviation from supersymmetry, (t - J), in the low-electron-density limit 
of the t-J model (c > 0 corresponds to a Luttinger liquid, while c < 0 has spin gaps 
in the excitation spectrum; the continuum approximation is adequate for a low-electron- 
density lattice model). This may contribute to a deeper understanding of the nature of the 
phases and of the phase boundary in the one-dimensional t-J model, and hence of strongly 
correlated electron systems. 

The rest of this paper is organized as follows. In section 2 we restate the ground-state 
Bethe ansatz equations for model (1.1) for a repulsive interaction in terms of the energy 
potentials for each class of states [4,7]. In section 3 we numerically solve the ground- 
state integral equations for c > 0 and calculate the energy, the chemical potential and the 
magnetic susceptibility as a function of the band filling and the coupling strength c. The 
limits c + 0 and c + CO are discussed. Some results for the low-field susceptibility and 
low-T specific heat are also reviewed. The dispersions of the elemental charge and spin 
excitations for repulsive coupling are obtained in section 4. In section 5 we consider the 
ground-state Bethe ~ S Q ~ Z  equations for an attractive interaction [6,7]. These equations 
are then numerically solved in section 6 to obtain the energy, the chemical potential, and 
critical fields as a function of band filling and c. The critical fields are the threshold fields 
to break up a bound state of N fermions with different colours. The low-T specific heat 
and the limit c + 0 are discussed. The spectrum of elemental excitations for attractive c is 
discussed in section 7. Finally, concluding remarks follow in section 8. 

2. Ground state Bethe ansatz equations: repulsive interaction 

Sutherland’s 141 solution of model (1.1) for N colour components consists of an iterative 
application of the Bethe-Yang hypothesis (generalized Bethe ansa@) [2,3], such that one 
colour is eliminated at each step, leading to N nested Bethe msatze. Each Bethe ansafz 
gives rise to a set of rapidities, [52’)], 1 = 0, . . . , N - 1, with 01 being the running index 
within each set. k, = tio) are known as charge rapidities, and the other N-1 sets refer to the 
spin degrees of freedom. All rapidities within a given set have to be different to guarantee 
linearly independent wavefunctions, giving rise to Fermi statistics for the rapidities, i.e. to 
‘particles’ and ‘holes’. In the ground state and for a repulsive potential (c > 0) all rapidities 
are real. 

In the thermodynamic limit the rapidities satisfy integral equations, which can be 
formulated in terms of energy potentials for each class of states, e(k) for the charges and 
@(C), I = 1,. . . , N - 1, for the spin degrees of freedom. These potentials are the energies 
entering the Fermi distribution function for each class of rapidities. Hence, a negative 
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potential defines the particles of the band and a positwe potential the holes. For a Zeeman 
splitting (no crystalline fields or other external potentials) the Bethe ansarz equations take 
the form [7] 

25 Q 1 1-1 lfl>& -Q 
E(k) = k2 - p - d t  FN-& - k) q#)(t) + 1 dk' E @ ' )  Gs(k - k') 

where f i  is the chemical potential and H the magnetic field. Here Kf&) = G;,Y(C) - 
S({) and C;",P(e), Gs(:) and f i (<)  are the Fourier transforms of 

The kernel of the integral equations for spin degrees of'freedom, G.y(o), has the 
characteristic form dictated by the SU(N) invariance and has appeared previously in related 
problems: (i) the SU(N)-invariant Heisenberg chain 11 11, (ii) the CoqblinSchneffer model 
[12], (iii) the degenerate Anderson model with excluded multiple occupancy of the f level 
[13], and (iv) the SU(N) generalization of the Hubbard model [14,15] and the degenerate 
Supersymmetric f - J model [9,1 I]. 

The integration limits Q and E1 are determined by the zeros of the potentials, i.e. 
~ ( r k Q )  = 0 and (o"'(fB~) = 0 and are related to p and H. The potential ~ ( k )  is negative 
for Ikl c Q (particles) and positive elsewhere (holes), so that Q defines the Fermi surface of 
the charges. Similarly @(e) 4 0 for < Bl (particles) and positive elsewhere (holes). In 
zero field we then have El = CO for all 1. The distribution density for each set of rapidities 
can be obtained from the energy potentials by differentiating with respect to p, 

h ( k )  + p(k) = - ( 1 / 2 ~ )  ( & / a f i )  (2.3) 

where p(k) refers to particles and ph(k )  to holes in the charge band and similarly for spin 
degrees of freedom. The integral equations satisfied by the distribution densities are obtained 
by differentiating (2.1) with respect to p. These integral equations do not explicitly depend 
on p and H ,  other than through Q and BI .  

U!)(& + ~ " ' ( 6 )  = - ( 1 / 2 ~ )  (acp")/ap) 

The ground-state energy is given by [4] ( L  is the length of the box) 

E / L  = l: dk k2 p ( k )  = J: e(k) + p N d L  

and the number nl /L  of electrons of each colour is determined via [4] 

(2.4b) 
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3. Ground-state properties: repulsive interaction 

In zero field all s in projections have the same number of particles, i.e. B, = m for all I and 
consequently m/f= 0. Hence, the first equation of (2.1) reduces to a single linear integral 
equation of the Fredholm type for ~ ( k )  (or p(k)) .  The integration limit Q parametrizes 
the total number of fermions as a function of the chemical potential. Hence, by solving 
the integral equation for a given Q we obtain f i  from the condition 6 ( Q )  = 0 and the 
ground-state energy and the electron density N J L  via (2.4). 

An analytic solution of the integral equation for p(k)  can be obtained in the limits 
c + 0 and c + CO. For c + 0 we have p(k) = NI(%) if Ikl < Q ,  ph(k) = 1/(2a) if 
Ik[ > Q. and zero elsewhere, so that 

EIL = ( N / 3 a ) Q 3  N J L  = ( N / n ) Q  /L = Qz.  (3.la) 

This limit corresponds to a free electron gas with N colour components. For c + CO, on the 
other hand, two particles cannot be at the same place at the same time (hard-core potential), 
so that p(k) = 1/(21r) for [kl < Q ,  f i ( k )  = 1 / (2n)  for Ikl 2 Q ,  and zero elsewhere. It 
follows that 

(3.16) 

As expected this result is independent of the number of spin components N, hence, the 
result would be identical for bosons and fermions. In the c + CO limit the charges (not the 
electron gas) behave as non-interacting fermions. 

The solution of the integral equation obeyed by p(k)  for general c and Q can only be 
obtained numerically. This is conveniently performed by iteration, discretizing the integral 
(using about 100 points). Note that p(k) and p&) are symmetric and non-negative functions 
of k.  The kernel of the integral equation can be expressed in terms of digamma functions 

2 E I L  = { 1 / 3 r ) Q 3  N J L  = (1/n)Q f i  = Q . 

Note that if we  scale k with c the integral equation for p for a given N depends on only one 
parameter, namely Q / c .  In figure l(a) we show p(k) + ph(k) as a function of k for Q = 1, 
N = 6 and four different values of c. For c j s  0 the density smoothly interpolates between 
charge particle and hole states. For c = 0, on the other hand, the density function has a 
step singularity and is non-analytical. This is consistent with Takahashi’s conclusion 1161 
that for S = $ it is possible to analytically continue from attractive to repulsive c unless 
M = NJ2.  In figure I(b) we display the particle density as a function of Q for N = 6 
and the same values of c, and in figure l(c) we show the energy density as a function of 
NJL. Note that for finite c the slope of NJL with Q is the same as for c = 0 for large 
Q (if Q >> c the interaction slnngth does not play an important role), while for small Q it 
has the same slope as for c = W. 

The chemical potential is given by 

aE 
aNe 

p = - = Qz + dk G s ( Q  - k )  ~ ( k ) .  (3.3) 

This is the energy required to add or remove one electron from the system; a change in 
N J L  implies a modified integration limit Q and hence a changed p(k),  so that alternatively 
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Figure 1. (a) Density distribution function p [ k )  of the charge rapiditis for the N = 6 Fermi 
gas with repulsive 6-function interaction. Q determines the Fermi surface for the charges. A 
step function at k = *Q is obtained for non-interacting fermions. For c + 00 (kard-mre 
potential) the distribution is constant, (b) Electron density N. fL as a function of Q for N = 6 
and four different couplings. (c) Energy density, (d) chemical potentid and (e) zero-field spin 
susceptibility for N = 6 and Q = 1 as a function of the particle density for the same interaction 
strengths as before. The zero-tempmure susceptibility diverges as c + 00 for all Nc /L. xs 
also diverges for all c as the electron density tends to zero as a consequence of the k = 0 Van 

Hove singularity. 
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p = (aE/aQ)/(aNe/aQ). To obtain these partial derivatives an integral equation obeyed 
by dp(k)/dQ (or by dc(k)/dQ), has to be solved numerically 1151. The chemical potential 
as a function of NJL is shown in figure l(d). 

The integral equation for p(k) can be interpreted [17] as a new problem of particles 
without spin degrees of freedom interacting in one dimension with an effective potential 

N - 1  
2 

where r is the relative coordinate between particles. This new many-body problem is 
integrable by construction and has been solved by Sutherland [18] using the results of 
Calogero and co-workers [19]. This problem is also closely related to the one-dimensional 
Toda lattice [20]. 

The zero-field susceptibility can be obtained in linear response to an arbitrarily small 
magnetic field [21,22] 

V ( r )  = --cz (sinh(Ncr/2))-’ (3.4) 

( N ~  - I ) N  c 1-5 dk P(W exp(2sklNc) 
(3.5) - XS(O)/L = - 12 

X J-QQ dk ~ ( k )  exp(2nk/Nc) ’ 

The susceptibility as a function of N e / L  for N = 6 and three values of c is shown 
in figure l(e). As N, /L  + 0 the susceptibility diverges as a consequence of the van 
Hove singularity of the empty band. For c --f CO the susceptibility diverges proportional 
to c /Q2 .  This result is the consequence of (3.lb) being independent of N, i.e. the 
spin-wave excitations do not have dispersion and consequently xs tends to a Curie law. 
In the limit c + 0, on the other hand, we obtain xs(O)/L = (Nz - l)/(24nQ) = 
((N’ - 1)NL)/(24n2N,). This expression explicitly shows the divergence as N J L  tends 
to zem according to the k = 0 van Hove singularity. 

If the magnetic field is small but finite logarithmic singularities arise in the zero- 
temperature susceptibility 121,221 

+... In IN In HI - = I -  
X S ( 0 )  ( N  In H) (N In H ) 2  

- x ~ H )  1 
(3.6) 

this is a common feature of numerous models, e.g. the SU(N) Heisenberg chain 111,221, 
the Babujian-Takhtajan model [23], the N-component supersymmetric t - 3 model in one 
dimension [8,9,11], the Gross-Neveu model 1241, and the SU(N) generalization of the 
Hubbard chain [14,15,17]. Any field lifting the degeneracy gives rise to the same form of 
logarithmic corrections, which are also a familiar feature in high-field expansions for the 
Kondo problem and the low-field dependence of undercompensated Kondo spins 1121. 

In the absence of symmetry-breaking fields, the energy bands for the spin rapidities 
are completely filled and there is no ‘Fermi surface’ for the spin-waves. An external 
degeneracy-lifting field introduces a ‘Fermi surface’ (a pair of points) in at least one of the 
spin-rapidity bands, even if the field is arbitrarily small. The logarithmic corrections are 
associated with an interference between the two Fermi points. Also the entropy behaves 
anomalously as both H and T tend to zero, and the y coefficient of the low-temperature 
specific heat is different for states with and without ‘Fermi surface’, so the H + 0 and 
T --f 0 limits cannot be interchanged 1251. 
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4. Elemental charge and spin excitations: repulsive interaction 

Charge excitations are obtained by adding (particles) or removing (holes) a rapidity from 
the set of charge rapidities {k,] ,  while spin excitations (spin waves)’correspond to adding 
or removing a spin rapidity ((f). On one hand, the excitation energies are given by the 
energy potentials t(k) and q(‘)($); on the other hand, they can be calculated (the traditional 
but tedious way) by computing the change in p(k) when a rapidity is added or removed. 
Both methods yield identical results. Since the integral equations determining the density 
functions are linear, the linear superposition principle applies for any finite number of 
excitations. Their behaviour is soliton like: they are additive and independent. Excitation 
spectra for condensed matter related models have been previously derived for the Heisenberg 
chain [26,27], the traditional Hubbard model [28,29], the SU(N)  invariant Hubbard model 
115,301 and the supersymmetric t - J model [8,9,31]. 

We consider the degenerate situation (no magnetic or crystalline fields), so that B, = 00 

for 1 = 1, . . . ,2S, i.e. all spin rapidity hands are full. If ko is the rapidity of the charge under 
consideration, we have a particle excitation if lkol > Q and a hole excitation if lkol < Q ,  
I.e. 

AEch(k0) = k(ko)l (4.1) 

with ko = k Q  representing the Fermi surface. 

and c -+ w. For c -+ 0 we obtain for the charge excitations 
The integral equation for ~ ( k )  can be solved analytically in the limiting cases c -+ 0 

while for c + CO we have for all ko 

AEh(ko) = lkz - QzI. (4.2b) 

Although the charge rapidities are frequently called momenta, they do not represent the 
physical momentum of the particles and holes, which is given by [9,15,28] 

P = 2~ dk [ p ( k )  +ph(k)].  (4.3) I”” 
A charge removed with ko = 0 has zero momentum, p(k0 = 0) = 0 and the momentum 
p is a monotonically increasing function of ko with the symmetry p(-ko) = -p(ko) .  For 
ko = Q ,  (4.3) yields p~ = n N , / L ,  the Fermi momentum. In the limit c + 0 we obtain 
p = Nko for lkol c: Q and p = S N J L  + (ko - Q )  for ko > Q .  On the other hand, 
for c --f CO we have p = ko for all values of ko. AE,h(p)  for Q = 1, N = 6 and 
four representative values of c are shown in figure 2(a). The dispersion is approximately 
parabolic. 

Close to the Fermi level, AEh is propomonal to /p  - p ~ l .  The proportionality constant 
is the Fermi velocity, which can be obtained via 
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Figure 2. (a) Charge excitation spectrum for N = 6 and Q = I for four repulsive coupling 
strengths. c = 0, c = 0.2, c = 1.0, and c = m. AEch vanishes at the Fermi surface, 
characterized by PF = n N . / L .  Here Ipl < p~ corresponds to hole states, while IpI > p~ 
represents particle states. c = 0 corresponds to free charges, and c = m to a hard-core potential 
among the electrons. (b) The Fermi velaciry as a function of band filling for the four c values 
considered above. Note that as long as c is finite the curves have slope % for c = 0 if N J L  is 
large and the same slope as the e = m curve if Q is small. 

where (dp/dko)e = Z n p ( Q ) .  To obtain the numerator an additional differential equation 
for (dE/dkO)h=p has to be solved. In the limit c + cc we obtain UF = 2Q = 2nNe/L ,  
while for c + 0 we have UF = 2Q = &N, /LN.  In this latter case we have to distinguish 
up for lkol > Q and l!ql < Q, since p(k)  + ph(k) is discontinuous at the Fermi level, but 
the Fermi velocity for particles and holes is the same. The Fermi velocity for N = 6 and 
four coupling strengths c is shown in figure 2(b) as a function of N , / L .  For a large band 
filling and finite c, the slope of U F  with N J L  is the same as for the c = 0 situation, while 
if Q is small or comparable to c this slope is that of hard-core fermions. 

The energy of the elemental spin-wave excitations is given by 

A@(Eo) = Id”(tdl. (4.5) 

The excitations correspond to a spin flip without changing the number of electrons. There 
are N - 1 spin-wave branches, one corresponding to each spin degree of freedom. The 
momentum of the spin wave is given by (& = 00) 

It is clear that pl + 0 as CO + -00; on the other hand, for t o  + CO we obtain 
pf”” = 2n(l - l / N ) N , / L .  This constraints the range of the momentum of the spin waves, 
which in this way is correlated to the Fermi surface of the charges. 

Let us now consider the limits c + 0 and c + CO. For c + 0 only excitations within 
the range It01 < Q are meaningful, and we obtain 

AEg’(Eo) = ( N  - 0(Q2 - PI = ( N  -NCO + Q). (4.7) 

For a strict hard-core potential (c + co), on the other hand, the excitation energy vanishes 
for all branches and all momenta. Hence, the spin-singlet state is not the ground-state of 
the system if c -+ 00; an infinitesimal field would align all spins into one direction. 
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Figure 3. Spinwave excitations for N = 6 and Q = 1 for three repulsive Coupling strengfhs: 
(a) c = 0, (b) c = 0.2 and (c) c = 1. There a i  N - I (i.e. five) spin-wave branches 
with a common spin-wave velocity. The maximum momentum of each branch is given by 
py" = &(I - l / N ) N . / L .  The dispersion can be characterized by three quantities: vs. 
A@(< = 0) and pya. (d) The spin-wave velocity as a function of electron density for the 
same values of the coupling. us grows monotonically with the electron density and decreases 
monotonically With increasing c. If c is finite the curves have the same slope as for c = 0 if 
N J L  is large, while if c > Q the spin-wave velocity sotiens. For c + 00 we have that us = 0 
for all eleclron densities. 

Our numerical results for the spin-wave dispersions are shown in figure 3(a)-(c) for 
N = 6 and Q = 1, and the coupling strengths c = 0, c = 0.2 and c = 1, respectively. 
Since N = 6 there are five branches for each case. Note that A@ is an even function of 
(0 and p&,) - n(l - l / N ) ( N , / L )  is odd, and 

(4.8) 

The spin-wave velocity is obtained from the long-wavelength limit of the spectrum, 
i.e. as CO -f -W. All branches have the same us, which is inversely proportional to the 
magnetic susceptibility, 

N Z - 1  
1237 usxs = -. (4.9) 

The product usxs depends only on N and not on c nor on the band-filling. 
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In the limit c + 0 vs = (2z/N)(Ne/L), while for c + 00 we have vs = 0. The spin- 
wave velocity for N = 6 is displayed in figure 3(d) as a function of the electron density 
for three values of c .  VS grows monotonically with N,/L and decreases monotonically with 
c if N J L  is kept constant. Again, if c << Q the slope of VS with N J L  is parallel to the 
c = 0 curve, while for c z Q the spin-wave velocity gradually becomes soft. 

5. Ground-state Bethe msatz equations: attractive interaction 

The discrete Bethe msuk equations derived by Sutherland [4] diagonalize model (1.1) for 
repulsive and attractive interaction. For an attractive potential, c < 0, fermions of different 
colour tend to form bound states, so that the rapidities corresponding to the ground-state 
solution are in general complex [2,61. For N different spin components we may have 
bound states of up to N fermions. In the thermodynamic limit a bound state of n electrons 
(n 6 N = 2 s  + 1) is characterized by one real rapidity <("-') (which parametrizes the 
motion of the centre of mass of the bound state) and in general complex rapidities, 5('), 
given by 

5;) = <("-I )  + ipc/2 

p = -(n - 1 - l), -(n - I - 3). . . . , (n - 1 - 1) 

I < n - I < 2 s  
(5.1) 

where we denote the k rapidities by e('). Since &I rapidities within a given set have to be 
different to ensure linearly independent solutions, they satisfy Fermi statistics, i.e. a rapidity 
is either represented (particle) or missing (hole). The ground-state integral equations can 
then be formulated in terms of energy potentials (entering the Fermi distribution) for each 
class of states, E ( ' ) ( < ) ,  where I = 0,. . . , n - 1. A negative energy potential defines the 
particles of the band and a positive potential corresponds to holes. For a pure Zeeman 
splitting we have [7] 

x sinh((pr,@ + l)oc/2)/sinh(wc/2) (5.2) 

where p ~ . ~  = min(l, q )  -& and p is the chemical potential. The E ( ' ) ( < )  are monotonically 
increasing functions of with zeros at AB', i.e. 6(')(1&) = 0. These zeros correspond to 
the 'Fermi surfaces' of the various spin-charge bound states and determine the integration 
limits with respect to <' in (5.2), which are integrations over 'particle' states. If we invert the 
above integral equations, so that the integrals on the right-hand side are over 'hole' states, 
then the integration kernel is again of the form (2.2) as dictated by the SU(N) symmetry. 
In contrast to the repulsive case, all BI are finite if the interaction is attractive (otherwise 
the density of fermions would diverge). 

The distribution densities, p " ) ( { )  for particles and p:'(<) for holes, for each class of 
rapidities can be obtained from the energy potentials by differentiating with respect to p, 

pi')(<) + p(')(c) = -(i/zr) (ae!')/ap) (5.3) 
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for I = 0, . . . , N - 1. Differentiation of equations (5.2) with respect to p yields the integral 
equations satisfied by the distribution densities 

Equations (5.4) have been derived previously by Takahashi [6].  
The ground-state energy is given by [6]  (L is the length of the box) 

the number of particles of each spin component is determined by 

and the total number of electrons (or in general fermions) becomes 

(5.4) 

(5.5b) 

(5.5c) 

6. Ground state properties: attractive interaction 

In zero field all spin projections have the same number of particles, so that from (5.5b) 
i31 = 0 for all I < 2.7. The only non-vanishing particle density is then p(2s)(5), which 
corresponds to bound stabs of N fermions all of  different colour (e.g. for electrons with 
N = 2 the bound states can be interpreted as Cooper pairs, while for nucleons with N = 4 
they represent a-particles). We denote Bzs by Q .  Equations (5.2) and (5.4) reduce to single 
integral equations of the Fredholm type with the kemel given by 

where denotes the digamma function and Re stands for real part. Note that if < is scaled 
with IcI the integral equation for p(") for a given N depends only on the parameter Q/Icl, 
which parametrizes the total number of fermions. 

In the absence of a field the integral equation for the density p(") can be solved 
analytically in the limit c + 0: p"')(<) = 1/(2x) for l<l < Q and ,or'(<) = N / ( 2 n )  if 
151 > Q ,  and zero elsewhere. The corresponding energy potential is d2"(C) = (5'' - Q2)  
if ]<I < Q and dZs)(<) = N (<' - Q2) if l<l > Q .  It follows that 
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This result corresponds to a free fermion gas with N colour components. For c -P -CO, 

on the other hand, we obtain p(w(<) = N / ( 2 n )  for [cl  < Q and piu)(() = N/(&)  if 
[<[ > Q. and zero elsewhere. From (5.5~2) it follows that the ground-state energy is not 
bound from below as c --f -m, so that we have to rescale energies with cz: 

Ne N Z  E S ( S + l )  
L n  Q ~ = ~ [ ( ~ ) ' - S ( S + I ) ] Q  E=(:) e2 -- 3 '  
_ = _  

(6.3) 

Hence, the spin-neutral bound states are very stable if the attractive potential is very strong. 
For general c the integral equation for dza(<) has to be solved numerically (discretizing 

the integral) for a given Q and j ~ .  is determined by the zero of the potential, In figure 4(a) 
we present the density function p(2s)(<)+py'(C) as a function of 5 for Q = 1, N = 4 and 
four different values of c. For c # 0 the density function smoothly interpolates between 
particle and hole states, but for c = 0 the distribution is discontinuous at the Fermi level. 
The particle density, N J L ,  is displayed as a function of Q in figure 4(b) for N = 4 and 
the same values of c. The curves for finite c have the same slope as the c = 0 line if 
Q >> IcI, but if Q < IcI the slope approaches the one of the c = -CO line. In figure 4(c) 
we show the energy density as a function of N J L .  For c = 0 it simply corresponds to a 
cubic parabola with a minimum of E = 0 at N J L  = 0. For N J L  # 0 the minimum is at 
a finite density of electrons. The binding energy of the bound states increases with IC[. The 
chemical potential p is determined from dzs)(Q) = 0, i.e. 

which for c --f 0 and c -+ -CO reduces to (6.2) and (6.3), respectively. The chemical 
potential as a function of N J L  for N = 4 is shown in figure 4(d). Due to the finite binding 
energy if c # 0 p is negative for small energy densities. 

The energy potentials of the spin-dependent bound states, t")(r) for 1 = 0.. . . ,2S - 1, 
are determined from (5.2) as integrals over E ' = ) ( < )  (in the absence of external fields). They 
are all positive symmetric functions of < and are monotonically increasing with increasing 
I(1. Hence, they have their minimum at = 0. In the limit c -P 0 we obtain for the 
potentials 

For very large negative c the energy potentials have a very large positive energy. 
In zero field the spin-dependent bound states always have a positive potential, so these 

bands are not populated in the ground-state. This is consistent with the original assumption 
that in the ground-state there are only spin-neutral bound states of N fermions. It requires 
a finite excitation energy to overcome the energy of the spin gaps. This energy could be 
provided by external fields; for a pure Zeeman field the critical magnetic fields required to 
break the spin-neutral charge bound state are given by the minimum of the potentials at 
5 =o, 
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Figure 4. (a) Density distribution function of the rapidities corresponding to the spin- neutral 
bound states of N electrons for an attractive &function potential. Q is the integration limit 
determining the Fermi surface. The curves for N = 4 and four interaction strengths C. A 
step function at < = &Q is obtained for non-intmting fermions. (b) Electron density NJL as 
a function of Q for N = 4  and four different couplings. Note that for finite c the curves have 
the same slope as for c = 0 if Q is large and the slope of the c = -ea line if Q is small. (c) 
Energy density and (d) chemical potential for N = 4 and Q = 1 in zero field as a function of 
the particle density for three interaction strengths. For c = --M the energy and the chemical 
potentid are not bound from below. Both the energy and the chemical potential can be negative 
as a consequence of the finite binding energy for the bound states. 

All critical fields vanish as c --f 0. In the limit Q = 0 we obtain the following analytic 
expression: 

C2 
N 2  - 1 - Z ( l l - 2 )  

6(2S - I )  
H:') = 

The critical fields as a function of I: are shown in figure 5 for Q = 1 (solid curves) and 
Q = 0 (dashed parabolas). Hence, for given c and Q the system does not respond CO a field 
smaller than the lowest critical field, i.e. H;'). For a field slightly larger than this critical 
one the 1 = 0 energy band begins to be populated, i.e. some of the spin-neutral bound 
states of N electrons are broken up into N unpaired propagatlng electron states, all with the 
maximum spin-component S. Hence, for H z Hjo) the system has a finite magnetization, 
which for a field slightly larger than Hia) is proportional to (H -H;o))tn, as a consequence 
of the van Hove singularity of the empty I = 0 band. 

For S = $ the lack of response to a magnetic field smaller than a critical one is in 
paa reminiscent of the Meissner effect, except for the lack of diamagnetism, which is not 
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0.0 0.5 1 .o 1.5 2.0 
C 

Figure 5. Critical fields HL". 1 c 2S, as a function of interaction stten& [cl for N = 4. The 
solid cuwes correspond 10 Q = I, while the dashed ones to Q = 0 (the very-low-electron- 
density limit). Note that HL") is be lowest field and hence the spin-neutral bound states br& 
up into N independent propagating states if H =- H:"), 

defined in one dimension. The 'Cooper pairs' 'are then gradually broken up by a field larger 
than the critical one. Note that there is no long-range order in one dimension, the bound 
states do not cease to exist at finite T (the critical temperature is zero), and in contrast to 
the BCS theory there is no condensation of Cooper pairs. For N = 4 the four degrees of 
freedom could arise from the direct product of a spin i and an isospin 4; the spin-neutral 
bound states then represent or-particles in a sea of nucleons. 

If the population of the 1 = 0 band (unpaired electrons) is finite the integral equations 
(5.2) no longer reduce to a single integral equation of the Fredholm type, but to two coupled 
ones. The finite band-filling, i.e. BO # 0, slightly renormalizes the critical field for the 
second band of spin-dependent states to be populated, which corresponds to I = 1, i.e. HE(t) 
is slightly changed. A small occupation of this band also contributes to the magnetization 
with a term proportional to (H- H~'))'/*, due to the one-dimensional van Hove singularity 
of the empty band, as do all the other bands with 1 < 2s. In summary, the T = 0 
susceptibility vanishes for H < Hio) and has a square-root singularity each time the field 
equals a critical one. 

The low-temperature specific heat is proportional to T, as a consequence of the Fermi- 
Dirac statistics obeyed by the rapidities. In zero field the only Fermi surface contributing 
to the specific heat is that of the spin-neutral bound states ('Cooper pairs' for S = i, a- 
particles for N = 4; note that the Fermi statistics prevents the Bose condensation). In the 
presence of an external magnetic field the specific heat is still proportional to T ,  unless the 
field is equal to a critical one, where the van Hove singularity of the empty band gives rise 
to a T 1 f 2  term. 

7. Elemental excitations: attractive interaction 

Pure charge excitations are obtained by adding or removing a spin-neutral boundstate of 
N electrons of different colours. This corresponds to adding or removing a sbring from 
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the set of strings of length 2s. All other energy bands or sets of shings involve mixed 
spin and charge states, and for the sake of clarity we will call them spin excitations. We 
will restrict ourselves to excitations in the absence of field. Adding or removing a rapidity 
3 from a given set gives rise to an additional driving term in equations (5.4), which is 
of the order of 1/L smaller than the main driving term. This additional driving term 
induces a change in the distribution density functions, p(')(f), and hence a change in the 
energy, which is the excitation energy. Since the integral equations (5.4) are linear in the 
densities, the superposition principle applies, i.e. the excitation energies and their momenta 
are additive and independent (soliton-like behaviour). This is the traditional but tedious 
way of computing (i.e. solving the integral equations for the additional driving term) the 
excitation energies. The energies of the elemental excitations are also given by the energy 
potentials 8). which are the energies entering the Fermi distribution function. The two 
approaches yield identical results. 

In the absence of fields we have that El = .O for 1 = 0, . . . ,2S - 1 and only Q is 
different from zero. If 30 is the 'charge' rapidity under consideration, we have a 'particle' 
excitation if Q (a rapidity is added) and a hole excitation if 1301 i Q (a rapidity is 
removed), i.e. 

A&h(Co) = IS(2s'(Co)l (7.1) 

where 30 = +Q represents the Fermi surface. The numerical solution of the integral 
equation for dzs) has been discussed in section 6. In the limit c + 0 we obtain 

in the limit c + -w, on the other hand, we have AEch(<o) = NI<; - Q z I  for all 50. 

The momentum is determined from the density distribution functions via 
As already discussed in section 4 CO is not the physical momentum of the excitation. 

t o  
pchKo) = 2~ dC [P""(C) + pgs'(C)]. (7.3) 

Hence, Pch(<O = 0) = 0, and the momentum is a monotonically increasing function of CO 
with the symmetry pch(-CO) = -pch(Co). For CO = Q we obtain from (7.3) that the Fermi 
momentum is p~ = ( x / N ) ( N , / L ) .  In the limit c -+ 0 we have that pcj, = 50 for ICO] < Q 
and pch = PF + N(3o - Q )  if CO > Q. The charge excitation spectrum is approximately 
parabolic and is shown in figure 6(a) for N = 4, Q = 1 and four values of c. 

The charge excitations vanish at the Fermi level. Close to the Fermi level the excitation 
energy is proportional to ( p  - p ~ ) .  the proportionality constant being the Fermi velocity 

(7.4) 

From (7.3) the denominator is 2 ~ p ( ~ ) ( Q ) .  In order to obtain the numerator an integral 
equation for (ad2"(Co)/a(o)lt,=~ has to be solved numerically. An analytical solution 
can be obtained in the limits c -+ 0, UF = (Zrr/N)(N,/L) = 2 p ~ ,  and c -+ -CO, 

up = (2a/N2)(N,/L) = 2 p ~ / N .  For c + 0 we have to distinguish the Fermi velocity 
for charge particle and hole excitations, since the density function is discontinuous in this 
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Figure 6. (a) Charge exciulian spectrum far N = 4 and Q = 1 for four different values af the 
amactive interaction, c = 0, c = -0.1, c = -1.0 and c = -a. 0 E . h  vanishes at the Fermi 
surface. characterized by p~ = (n /N)(N. /L) .  The charge excitations conespond to removing 
(for a hole) one spin-neutral boundstate (IpI p ~ )  01 to adding one boundstate (for a particle) 
to the system (IpI > p ~ ) .  The dispersion is approximately parabolic. (b) Fermi velocity as a 
hrnction of band filling for the four c values comidered above. NoJe that if IcJ >> Q the slope 
of the curves is approximately that corresponding to c = --M, while if le1 is small compared to 
Q, the slope asymptotically approaches that of the c 0 line. 

limit, but of course the two cases yield the same UF. The Fermi velocity for N = 4 and 
four interaction strengths is displayed in figure 6@) as a function of band filling, N,/L.  If 
IcI << Q the slope of UF with N J L  is the same as for c = 0, while if IcI >> Q (small 
elecwon densities) the slope approaches that of infinite interaction. 

The elemental excitations corresponding to the remaining classes of rapidities, 1 = 
0, . . . ,2S - 1, refer to spin-dependent bound states involving less than N electrons. Adding 
one rapidity, however, involves an actual addition of particles, so these states also carry a 
charge. As discussed above in the absence of an external field the bands for 1 c 2s are 
completely empty in the ground-state and it requires a finite excitation energy to overcome 
the gap and populate them. Hence, excitations are obtained by adding one rapidity 6' and 
the excitation energies are given by 

(7.5) A@)($) = E ( ' ) ( $ )  E = 0,. . . , 2 S  - 1. 

The physical momentum of the excitation is from its definition 

where the hole density function is given by (5.4). Hence, the momentum of the added 
boundstate is zero if incorporated into the centre of the band. Straightforward integration 
yields 
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where we used that p@s)(<)  is an even function of 5 .  In the limit #) + CO expression 
(7.6b) reduces to 

P"'(rp) = (1 + U($ - P F )  (7.6~) 

where p~ is the Fermi momentum of the charge excitations. Hence for very large #' the 
momentum is proportional to #' and the spectrum is approximately parabolic. 

In the limit c + 0 both the excitation energy and the momentum vanish identically for 
I$'l < Q ;  expressing the excitation energy as a function of the momentum for [To I > Q 
we obtain 

(1) 

A E $ ) ( p ) = 2 Q [ p l + p Z / ( 1 + 1 )  I = O ,  ..., 2 s - 1 .  (7.7) ~ 

. 

For c + -CO, on the other hand, the spin-dependent excitations require an infinite energy, 
as a consequence of the very large chemical potential. This means that it is energetically 
unfavourable to have electrons in bound states involving less than N particles. 

h 

v 
h 

v) 
3 

W 
d 

3 1  
t /// 

t A/ 

P 
Figure 7. Excitation spec" of spin-charge bound srares for N = 4, Q = I and c = -1 (solid 
curves) and c = 0 (dashed CUN~S). There are three (N - 1) branches of excitations. For c e 0 
there is always a gap in the spectrum, since a finite energy is required to unbind the spin-neutral 
bound states of N fermions. On the other hand, if c = 0 there are long-wavelength excitations 
with zem energy and a spin-wave velocity (vs = ZQ) can be &fined. 

The dispersion of the spin-charge bound-state excitations is displayed in figure (7) for 
N = 4, Q = 1 and two values of the interaction, c = 0 and c = -1. For c < 0 all branches 
require a finite excitation energy for their population; the gaps are given by the minimum 
at p = 0 and correspond to the critical fields discussed in section 6 (see figure 5). The 
dispersion is approximately parabolic and crossovers of bands (without hybridization) may 
occur. A spin-wave velocity can only be defined for c = 0 (for c # 0 there is no Fermi 
surface) at the point p = 0, U,, = 2Q.  This result agrees with the c -+ 0 limit for the 
repulsive interaction discussed in section 4. 
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8. Concluding remarks 

We have studied some ground-state properties and the spectrum of elemental charge and 
spin excitations of the N-component Fermi gas interacting via a &function potential in one 
dimension. The model is integrable and has been diagonalized by means of a sequence of 
N nested Bethe arvake by Sutherland [41 (see also [5]). For a repulsive interaction the 
electrons do not form bound states in the ground-state and the system consists of freely 
propagating charge states (characterized by the charge rapidities) and spin-waves (described 
by real spin rapidities). As usual for onedimensional systems charge and spin degrees 
of freedom decouple and propagate with different velocities. For an attractive interaction 
potential, on the other hand, the ground-state in the absence of symmetry breaking fields 
consists of spin-neutral charge bound states of N particles, each fermion with a different 
spin-component. For N = 2 these bound states can be interpreted as Cooper pairs, and for 
N = 4 as or-particles in a sea of nucleons with the four internal degrees of freedom arising 
from the direct product of the spin 4 and an isospin 

For a repulsive interaction we calculated, by numencally solving the ground-state Bethe 
ansarz integral equations, the ground-state energy, the chemical potential and the magnetic 
susceptibility as a function of band filling for N = 6 and several coupling strengths. 
The one-dimensional van Hove singularity determines the properties (i.e. the zero-field 
susceptibility and the y coefficient of the specific heat are both proportional to Q-’) 
when the band is nearly empty. A small (but arbitrary) symmetry-breaking field induces 
logarithmic field singularities in the susceptibility [Zl] ,  and the y-coefficient of the specific 
heat is singular in the sense that the field and temperature tending to zero limits cannot 
be interchanged [25]. In the h i t  N + CO the fermion character of the particles (Pauli’s 
principle) is not relevant (particles of different colours are distinguishable) and the integral 
equation for the charges reduces to that of a gas of bosons [1,4]. 

We also calculated the spectrum of elemental excitations in the absence of external fields. 
There are two ways to obtain the excitation energies, (i) through their energy potentials and 
(ii) by solving the integral equation for the change in the distribution densities when a 
rapidity is either added or removed from the system. The two methods yield identical 
results. The charge excitations are approximately parabolic in the momentum and have a 
Fermi surface with the Fermi momentum related to the band filling. The Fermi velocity 
is roughly proportional to N J L .  There are N - 1 spin-wave excitation branches. The 
excitation energy of long-wavelength spin waves is proportional to the momentum. This 
defines the spin-wave velocity, which is the same for all branches. The product of the spin- 
wave velocity and the zero-field susceptibility yields a constant which is independent of the 
coupling strength and of the band-filling. The momentum range of the spin-wave spectrum 
is correlated with the Fermi surface of the charges. For c + 00 the spin waves become 
soft (us + 0) and the susceptibility and the y coefficient of the specific heat diverge for 
all band fillings. 

For an anractive interaction the ground state, in the absence of external fields, consists 
of bound states of N particles. Although these charge bound states are a consequence of 
a coherent collective state, there is no long-range order in the system. The charge bound 
states have a finite binding energy, and a finite external symmetry-breaking potential (for 
instance a magnetic field in the case of Cooper pairs, reminiscent of the Meissner effect) 
is required to break the bound state into smaller units (e.g. an or-particle into nucleons or 
deuterons, or a Cooper pair into two propagating electrons). The charge excitations have a 
dispersion that is approximately parabolic, they have a Fermi surface with Fermi momentum 
and Fermi velocity determined by the band-filling. Rather than spin waves the system has 

2: 
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spin-charge excitations. These correspond to adding (or removing) a bound state with less 
than N particles. Since it requires a critical field to break the charge bound states, the 
excitation spectrum of the spin-charge bound states has an energfgap, but is otherwise 
roughly parabolic in the momentum. The T '=  0 magnetic susceptibility is zero and a spin- 
wave velocity cannot be defined (except for c = 0). The specific heat is again linear in T ,  
with the y-coefficient determined by the Fermi velocity of the charge excitation spectrum. 

In summary, if c > 0 the system behaves like a Luttinger liquid, while for c < 0 there 
are spin gaps in the excitation spectrum. This behaviour is qualitatively analogous to that 
of the t - J model with low electron density around the point of supersymmehic coupling, 
t = J. Here a Luttinger liquid is expected when t > J, while spin gaps occur for f < J 
[W. 
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